Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1215: 123547, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2180186

ABSTRACT

Favipiravir is a prodrug of T-1105 made by modifying the pyrazine group as a COVID-19 therapy. During the pandemic, a safe and comfortable biosampling technique is needed for the subject or patient. Volumetric Absorptive Microsampling (VAMS) is a biosampling technique with a small blood volume and minimum hematocrit effect. The aims of this study were to develop and validate an analytical method for quantifying favipiravir extracted from VAMS using High Performance Liquid Chromatography - Photodiode Array with remdesivir as an internal standard. Analysis of favipiravir was performed using a C18 column (Waters, Sunfire™ 5 µm; 250 × 4.6 mm), with injection volume of 50 µL, flow rate of 0.8 mL/min, column temperature 30 ℃, and wavelength 300 nm. The separation was conducted under gradient elution with mobile phase consists of acetonitrile-0.2 % formic acid-20 mM sodium dihydrogen phosphate pH 3.5 and run time 12 min. Sample preparation was carried out using a protein precipitation method with 500 µL of methanol as precipitating agent. Samples were mixed on vortex for 30 s, sonicated for 15 min, and centrifuged at 10,000 rpm for 10 min. Lower Limit of Quantification (LLOQ) obtained was 0.5 µg/mL and the calibration curve ranged from 0.5 to 160 µg/mL. Sensitivity, linearity, selectivity, carry-over, accuracy, precision, recovery, and stability were validated by the guideline from Food and Drug Administration 2018. The method developed has successfully met the full validation requirements by FDA 2018 with the LLOQ obtained was 0.5 µg /mL.


Subject(s)
COVID-19 , Humans , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Pyrazines
2.
Front Immunol ; 12: 696370, 2021.
Article in English | MEDLINE | ID: covidwho-1357528

ABSTRACT

The COVID-19 pandemic is caused by SARS-CoV-2, a novel zoonotic coronavirus. Emerging evidence indicates that preexisting humoral immunity against other seasonal human coronaviruses (HCoVs) plays a critical role in the specific antibody response to SARS-CoV-2. However, current work to assess the effects of preexisting and cross-reactive anti-HCoVs antibodies has been limited. To address this issue, we have adapted our previously reported multiplex assay to simultaneously and quantitatively measure anti-HCoV antibodies. The full mPlex-CoV panel covers the spike (S) and nucleocapsid (N) proteins of three highly pathogenic HCoVs (SARS-CoV-1, SARS-CoV-2, MERS) and four human seasonal strains (OC43, HKU1, NL63, 229E). Combining this assay with volumetric absorptive microsampling (VAMS), we measured the anti-HCoV IgG, IgA, and IgM antibodies in fingerstick blood samples. The results demonstrate that the mPlex-CoV assay has high specificity and sensitivity. It can detect strain-specific anti-HCoV antibodies down to 0.1 ng/ml with 4 log assay range and with low intra- and inter-assay coefficients of variation (%CV). We also estimate multiple strain HCoVs IgG, IgA and IgM concentration in VAMS samples in three categories of subjects: pre-COVID-19 (n=21), post-COVID-19 convalescents (n=19), and COVID-19 vaccine recipients (n=14). Using metric multidimensional scaling (MDS) analysis, HCoVs IgG concentrations in fingerstick blood samples were well separated between the pre-COVID-19, post-COVID-19 convalescents, and COVID-19 vaccine recipients. In addition, we demonstrate how multi-dimensional scaling analysis can be used to visualize IgG mediated antibody immunity against multiple human coronaviruses. We conclude that the combination of VAMS and the mPlex-Cov assay is well suited to performing remote study sample collection under pandemic conditions to monitor HCoVs antibody responses in population studies.


Subject(s)
Antibodies, Viral/blood , Coronavirus/immunology , Cross Reactions/immunology , Immunoassay/methods , Antibodies, Viral/immunology , Betacoronavirus/immunology , COVID-19/immunology , Coronavirus 229E, Human/immunology , Coronavirus NL63, Human/immunology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus OC43, Human/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
3.
Bioanalysis ; 13(8): 621-629, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1173023

ABSTRACT

Volumetric absorptive microsampling (VAMS) is increasingly utilized for both nonclinical and clinical pharmacokinetic studies. Currently, VAMS is employed as the sampling method for the detection of antibodies for coronavirus disease 2019. Biotherapeutics whole blood stability on VAMS presents as a critical concern for the health and pharmaceutical industries. In this follow-up to our previous publication, we evaluated daclizumab and trastuzumab whole blood sample stability on VAMS. The drug recovery data we observed at room temperature for short term and -80°C for long term was very encouraging. The knowledge could help us better understand and plan important investigation timelines, especially pandemic situations where human whole blood samples from a large population are collected and in urgent need of data analysis.


Subject(s)
Antibodies, Monoclonal/blood , Antibodies, Monoclonal/pharmacokinetics , Dried Blood Spot Testing/methods , Animals , Blood Specimen Collection/methods , Daclizumab/blood , Daclizumab/pharmacokinetics , Drug Storage , Light , Rats , Tandem Mass Spectrometry , Temperature , Trastuzumab/blood , Trastuzumab/pharmacokinetics
4.
Drug Des Devel Ther ; 14: 5757-5771, 2020.
Article in English | MEDLINE | ID: covidwho-1016010

ABSTRACT

An infectious disease, COVID-19, caused by a new type of coronavirus, has been discovered recently. This disease can cause respiratory distress, fever, and fatigue. It still has no drug and vaccine for treatment and prevention. Therefore, WHO recommends that people should stay at home to reduce disease transmission. Due to the quarantine, FDA stated that this could hamper drug development clinical trial protocols. Hence, an alternative sampling method that can be applied at home is needed. Currently, volumetric absorptive microsampling (VAMS) has become attention in its use in clinical and bioanalytical fields. This paper discusses the advantages and challenges that might be found in the use of VAMS as an alternative sampling tool in clinical trials and therapeutic drug monitoring (TDM) during the COVID-19 pandemic. VAMS allows easy sampling, can be done at home, storage and delivery at room temperature, and the volume taken is small and minimally invasive. VAMS is also able to absorb a fixed volume that can increase the accuracy and precision of analytical methods, and reduce the hematocrit effects (HCT). The use of VAMS is expected to be implemented immediately in clinical trials and TDM during this pandemic considering the benefits it has.


Subject(s)
COVID-19/epidemiology , Clinical Trials as Topic/methods , Drug Monitoring/methods , SARS-CoV-2 , Specimen Handling/methods , Drug Development , Drug Discovery , Humans
SELECTION OF CITATIONS
SEARCH DETAIL